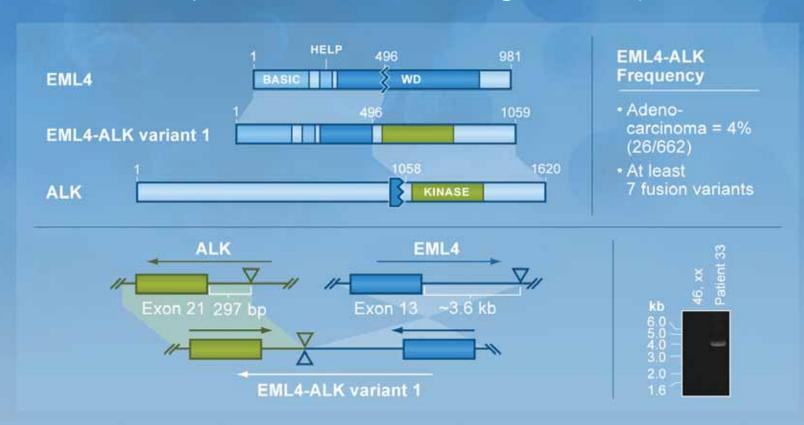


ALK Fusion Oncogenes in Lung Adenocarcinoma

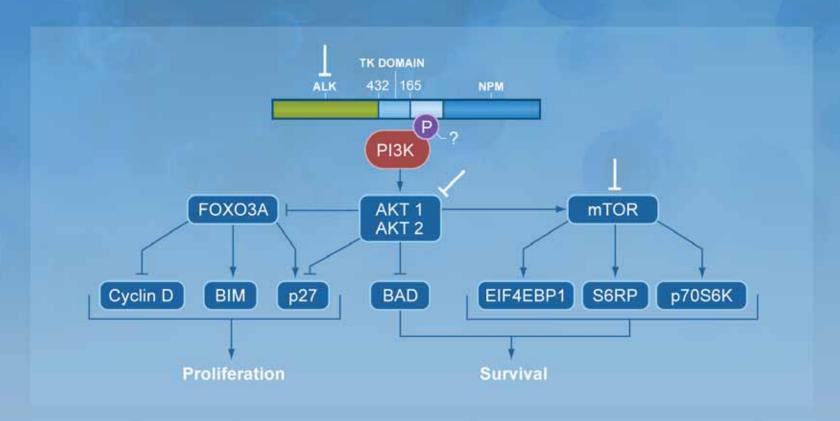
Vincent A Miller, MD

Associate Attending Physician, Thoracic Oncology Service Memorial Sloan-Kettering Cancer Center New York, New York



ALK Fusion Oncogenes in Lung Adenocarcinoma

- Translocations resulting in fusion genes
- A receptor tyrosine kinase (anaplastic lymphoma kinase [ALK]) fuses to the echinoderm microtubule-associated protein-like 4 (EML-4) [Soda Nature 2007]
- Multiple chimeras found there are other fusion partners besides EML-4
- Oncogenic
- Activation enhances proliferation and survival, changes cell shape through KRAS-ERK, JAK3-STAT, PI3K



EML4-ALK Fusion Gene in NSCLC (Non-Small-Cell Lung Cancer)

ALK Anti-Apoptotic Signaling Occurs via PI3K

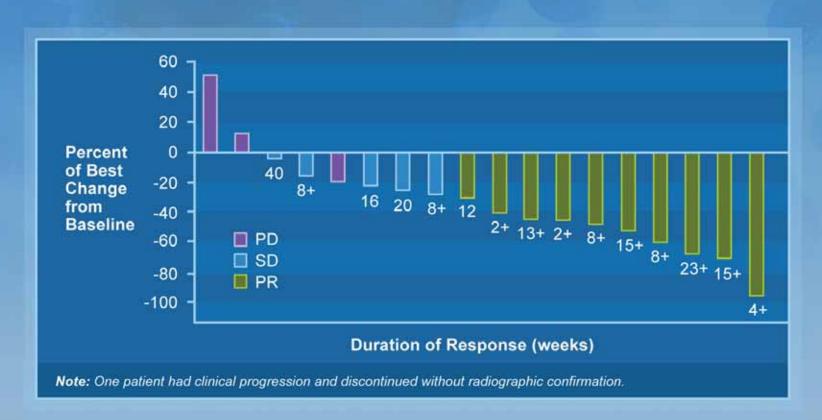
Clinical Activity Observed in a Phase 1 Dose-Escalation Trial of an Oral MET and ALK Inhibitor PF-02341066

RP2D Molecular Cohort: NSCLC with ALK Fusion

(n = 19)

	Characteristics	Number (Percentage) 50 (28-73) 9:10	
	Median age (range), years		
	Gender (male:female)		
ECOG PS	0	4 (21%)	
	1	12 (63%)	
	2	3 (16%)	
Smoking History	Current smoker	0	
	Former smoker	5 (26%)	
	Never smoker	14 (74%)	
Histology	Adenocarcinoma	17 (90%)	
	Squamous cell carcinoma	1 (5%)	
	Unknown	1 (5%)	
Prior Treatment	1 Regimen	7 (37%)	
	2 Regimens	4 (21%)	
	3 Regimens	4 (21%)	
	> 3 Regimens	4 (21%)	

Data in the database as of March 9, 2009

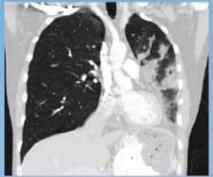


EML-4 ALK Fusion Oncogene in Lung Adenocarcinoma: Clinical and Pathologic Characteristics

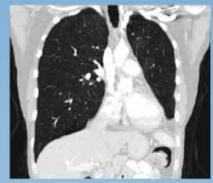
- Patients may be younger and are more commonly male
- More common in adenocarcinoma and never or modest smokers
- Unlike EGFR mutation may NOT be prognostic
- Like EGFR mutation largely exclusive from KRAS mutation
- Rare to occur with EGFR mutation
- Occurs in 25% of EGFR/KRAS WT never smokers

Tumor Responses to PF-02341066 for NSCLC Evaluable Patients with ALK Fusions

Molecular Cohort: NSCLC ALK Fusion


- Overall response rate = 53% (10/19 pts)
- Disease control rate at 8 weeks = 79% (15/19 pts)
- 4 patients had progression at first evaluation

48 yo Female Non-Smoker with NSCLC ALK Fusion


Pre-Treatment

After 2 Cycles PF-02341066

ALK-Related Efficacy Evaluable Patients w/ NSCLC

Patient ID	Previous Treatments	Best Response	PF-1066 Best Response	Duration of Response	Status
10021042	1	SD	PR	12 wk	Discont. (5 mo)
10081001	2 (erlotinib)	PD* PR*	PR	15 wk +	Ongoing (8 mo +)
10021038	2 (erlotinib)	SD, SD*	PR	23 wk +	Ongoing (7 mo +)
10021039	1	PD	PR	15 wk +	Ongoing (7 mo +)
10071016	3	PD, PD, PD	PR	8 wk +	Ongoing (4 mo +)
10021043	2	PD, SD	PR	13 wk +	Ongoing (4 mo +)
10071019	7 (gefitinib)	PD, SD, PD*, SD, SD, SD, PD	PR	8 wk +	Ongoing (2 mo +)
10071020	5 (gefitinib)	SD, SD, PD*, PR, PR	uPR	4 wk +	Ongoing (3 mo +)
10021023	3	SD, PD, PD	uPR	2 wk +	Ongoing (2 mo +)
10081002	3 (erfotinib)	SD*, PD, SD*	uPR	2 wk +	Ongoing (2 mo +)
10021045	1	SD	SD	N/A	Ongoing (2 mo +)
10021056	1	SD	SD	N/A	Ongoing (2 mo +)
10021026	3 (erlotinib)	SD*, SD, PD	SD	N/A	Discont (PD) (10 mo)
10021040	1 (erfotinib)	PD*	SD	N/A	Discent. (PD) (4 mo)
10021014	2 (erlotinib)	SD, PD*	SD	N/A	Discont. (PD) (5 mo)
10021051	1	PD	PD	N/A	Discont (<1 mo)
10021058	1	PD	PD	N/A	Discont. (1 mo)
10071021	3 (erfotinib)	SD, SD, PD*	PD	N/A	Discont. (<1 mo)
10051003	4 (erlotinib)	PD*, PR, PR, SD	PD	N/A	Discont. (1 mo)

ALK Fusions: A Therapeutic Target in NSCLC

- ALK tyrosine kinase druggable
- Phase II and III trials of PF-02341066 in patients with ALK fusions are imminent
- Testing now available commercially and at certain institutions

Conclusions

- Non-small cell lung cancer is no longer one disease treated empirically with one or two chemotherapy regimens.
- NSCLC, and in particular adenocarcinoma, must be subtyped both pathologically and genotypically.
- EGFR mutations served as a "watershed event" for this fundamental paradigm change, but other "druggable" kinase mutations will continue to be identified.