

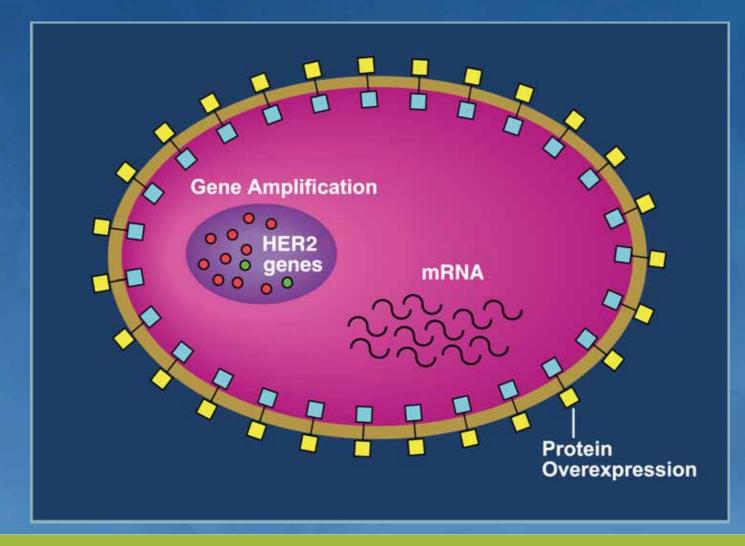
BREAST CANCER PATHWAYS

Targeting the Oncogenic Pathway as Opposed to the Primary Tumor Site: HER2 as an Example Dennis J Slamon, MD, PhD Professor of Medicine Chief, Division of Hematology/Oncology; Director of Clinical/Translational Research, Jonsson **Comprehensive Cancer Center, David Geffen** School of Medicine at UCLA

Disclosures for Dennis J Slamon, MD, PhD

Consulting Agreement	Bristol-Myers Squibb Company
Speakers Bureau	Genentech BioOncology, Roche, GSK, sanofi- aventis

- Similar molecular targets may be found in multiple tumor types
- Does the presence of the target predict response to the targeted agent?
- Trastuzumab in HER2-positive gastric cancer: The ToGA trial
- Lessons learned from translational research in tumors overexpressing HER2
- Are we moving toward a molecular taxonomy?


HER2 Overexpression in Diverse Tumors

	N	Rate of HER2 positivity	Definition of HER2 positivity
Invasive breast cancer (<i>JNCCN</i> 2006;4:S1)		15-20%	IHC3+, FISH positive or ≥6 HER2 gene copies/cell
NSCLC (<i>JCO</i> 2005:5007)	101	22.8%	FISH positive
Prostate (<i>J Urol</i> 2005:2174)	279	13.3%	Serum HER2/neu > 14 ng/mL
Recurrent/refractory ovarian or primary peritoneal carcinoma (JCO 2003:283)	837	11.4%	IHC2+ or 3+ overexpression
Uterine papillary serous cancers (ASCO 2003;Abstract 1870)	19	26%	IHC3+

HER2 Overexpression in Diverse Tumors

	N	Rate of HER2 positivity	Definition of HER2 positivity
Pancreatic cancer (GI Cancers Symposium 2010;Abstract 200)	207	26%	IHC Grade ≥2 and/or FISH positive
Ewing's sarcoma (<i>Eur J Cancer</i> 2005;41:1349)	113	16%	IHC <u>></u> 2+
Osteosarcoma (<i>Eur J Cancer</i> 2005;41:1349)	84	32%	IHC ≥2+
Bladder cancer (<i>Endocr Relat</i> <i>Cancer</i> 2001;8:11, <i>Cancer Res</i> 1993;53:2199)	141	36%	FISH positive
Advanced gastric cancer (ASCO 2009;Abstract 4556)	3,807	22.1%	IHC3+ and/or FISH positive

HER2 Gene Amplification Is Responsible for "Pathologic/Pathogenic" Overexpression

Testing Issues

- Integrity of the macromolecule being analyzed degradation of DNA, RNA, or protein
- Accuracy of the reagent variability of the antibodies
- Stability of the target, eg, fixation artifacts in proteins

 altering antigenic sites and recognition that the preanalytic phase cannot be controlled
- Accuracy of the testing method
- Heterogeneity of the sample being tested

Percent of Breast Cancers in Various Expression Categories Identified by Immunostaining with 28 Different Antibodies

120 -

- Similar molecular targets may be found in multiple tumor types
- Does the presence of the target predict response to the targeted agent?
- Trastuzumab in HER2-positive gastric cancer: The ToGA trial
- Lessons learned from translational research in tumors overexpressing HER2
- Are we moving toward a molecular taxonomy?

Does the Presence of the Target Predict Response to the Targeted Agent?

Sometimes...

- The tumor must rely on the oncogenic pathway as a primary means of growth
 - ER in hormone receptor-sensitive breast cancer
- Overexpression does not necessarily indicate "over-activity"
 - EGFR IHC-positive versus EGFR mutation-positive NSCLC

• Mechanism of target inhibition may impact tumor response

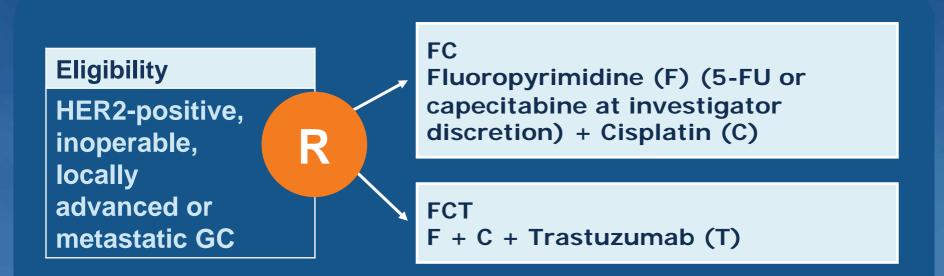
 HER2-positive breast cancer may be resistant to trastuzumab but sensitive to lapatanib (or vice versa)

- Similar molecular targets may be found in multiple tumor types
- Does the presence of the target predict response to the targeted agent?
- Trastuzumab in HER2-positive gastric cancer: The ToGA trial
- Lessons learned from translational research in tumors overexpressing HER2
- Are we moving toward a molecular taxonomy?

Molecular Biology

- p53: 77%
- EGFR
- HER2/neu: Bang ASCO 2009 22%
- E-cadherin
- FHIT
- p16/p27
- COX-2

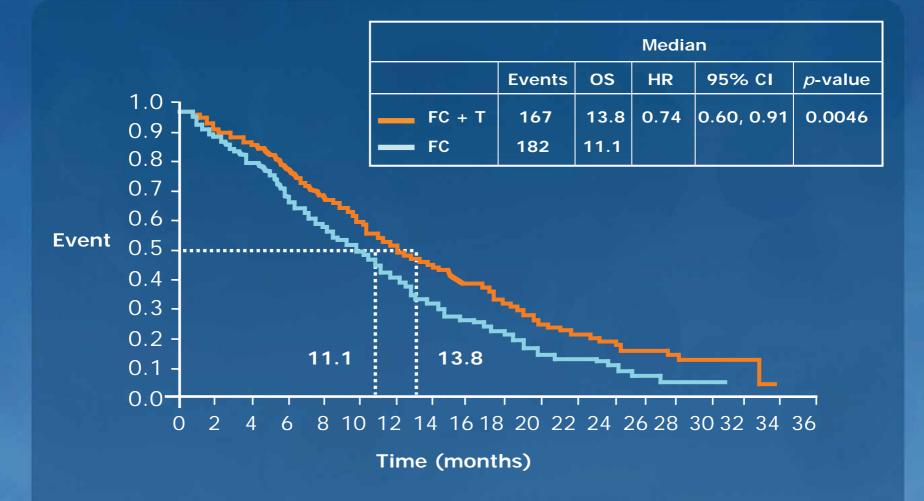
HER2 by IHC, CISH and FISH in Patients with Gastric Cancer (n = 182)


HER2 expression = 15.9% (IHC); 3.8% (CISH/FISH)

- Rate of HER2 amplification for intestinal-type cancer is greater than for diffuse-type cancers, *p* < 0.05
- Tumors with HER2 amplification were associated with poor mean survival rates (922 vs 3,243 days) and 5-year survival rates (21.4% vs 63%, p < 0.05)

Efficacy Results from the ToGA Trial: A Phase III Study of Trastuzumab Added to Standard Chemotherapy (CT) in First-Line Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Advanced Gastric Cancer (GC)

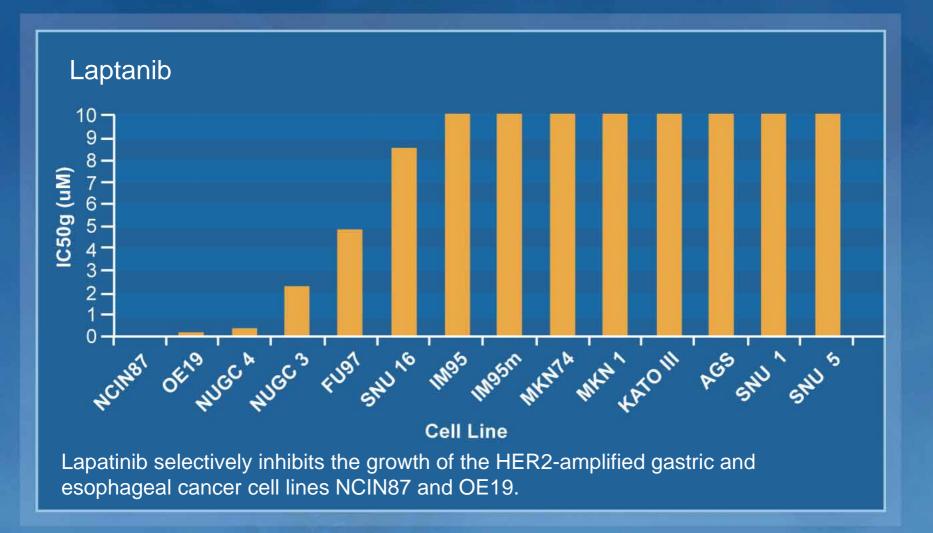
Van Cutsem E et al. Proc ASCO 2009;Abstract LBA4509.


ToGA Trial Design (N = 584)

- 5-FU = $800 \text{ mg/m}^2/\text{day}$ continuous infusion d1-5 q3w x 6
- Capecitabine = $1,000 \text{ mg/m}^2 \text{ bid } d1-14 \text{ q}3\text{w x } 6$
- Cisplatin = $80 \text{ mg/m}^2 \text{ q3w x } 6$
- Trastuzumab = 8 mg/kg loading dose → 6 mg/kg q3w until PD

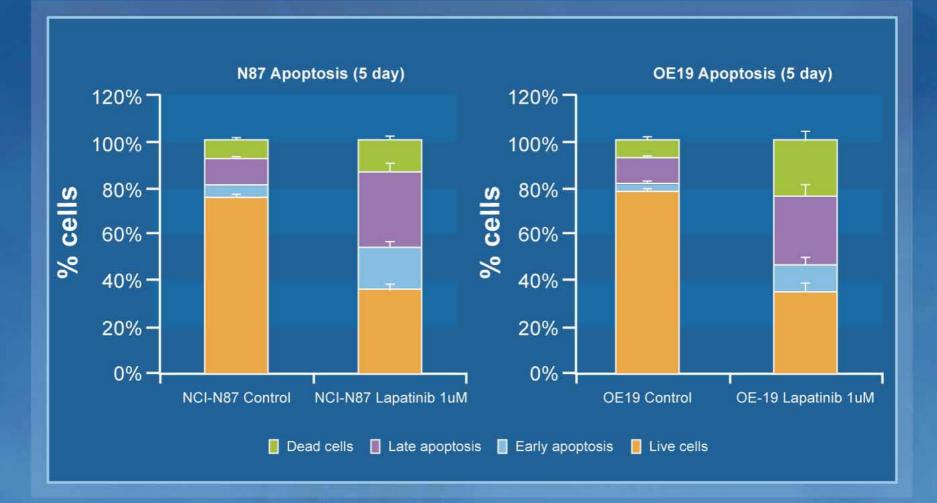
Van Cutsem E et al. ASCO 2009; Abstract LBA4509.

Primary Endpoint: Overall Survival – decreased relative risk of death by 26%

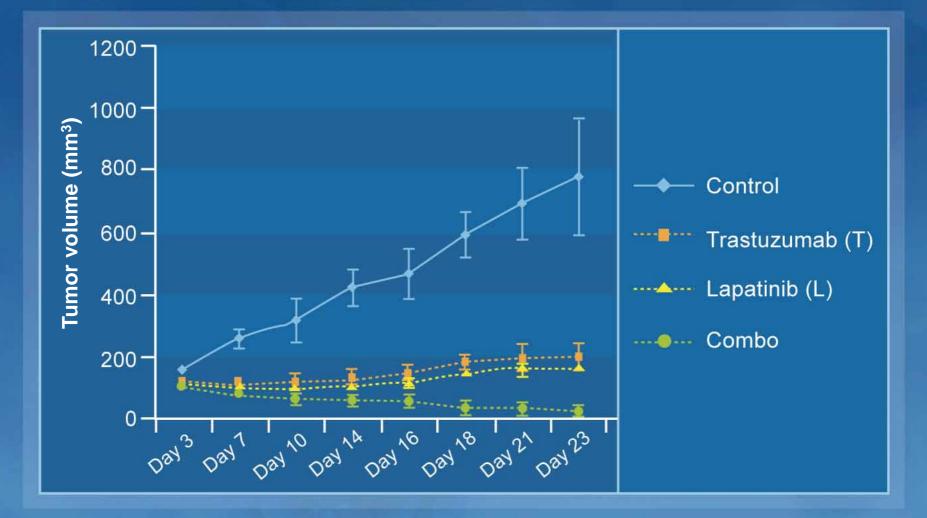

Reprinted with permission: Van Cutsem E et al. ASCO 2009; Abstract LBA4509.

- Similar molecular targets may be found in multiple tumor types
- Does the presence of the target predict response to the targeted agent?
- Trastuzumab in HER2-positive gastric cancer: The ToGA trial
- Lessons learned from translational research in tumors overexpressing HER2
- Are we moving toward a molecular taxonomy?

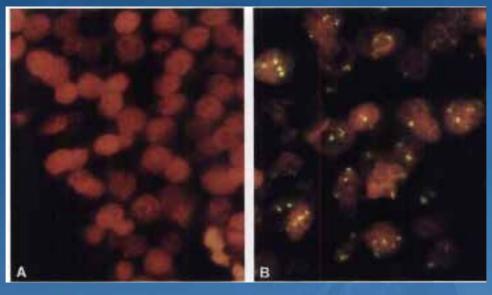
Lapatinib, a Dual EGFR and HER2 Kinase Inhibitor, Selectively Inhibits HER2-Amplified Human Gastric Cancer Cells and Is Synergistic with Trastuzumab In Vitro and In Vivo


Wainberg ZA et al. *Clin Cancer Res* 2010;16(5):1509-19.

Cell Growth Inhibition by Lapatinib In Vitro

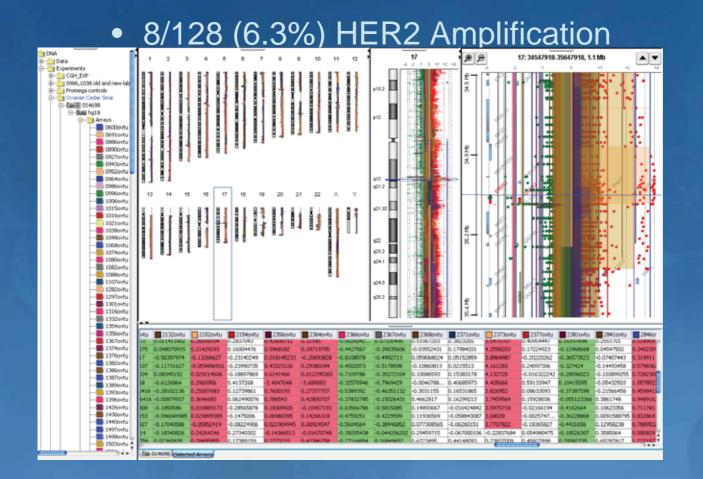

Reprinted with permission: Wainberg ZA E et al. *Clin Cancer Res* 2010;16(5):1509-19, figure 1.

Lapatinib Induces Apoptosis in HER2-Amplified Gastric Cell Lines


Reprinted with permission: Wainberg ZA E et al. *Clin Cancer Res* 2010;16(5):1509-19, figure 3.

Synergistic Antitumor Activity of Lapatinib and Trastuzumab in Combination (N87 Xenograft)

Reprinted with permission: Wainberg ZA E et al. *Clin Cancer Res* 2010;16(5):1509-19, figure 6.


HER2 Gene Amplification in Salivary Gland Mucoepidermoid Carcinomas

HER2 Not Amplified

HER2 Amplification

Agilent Array-CGH in Ovarian Cancer

Lee Anderson, Slamon Lab (unpublished data)

- Similar molecular targets may be found in multiple tumor types
- Does the presence of the target predict response to the targeted agent?
- Trastuzumab in HER2-positive gastric cancer: The ToGA trial
- Lessons learned from translational research in tumors overexpressing HER2
- Are we moving toward a molecular taxonomy?

Maybe...