

Targeting DNA repair in BRCA 1/2 and Triple Negative Breast Cancer

Andrew Tutt, MB ChB, PhD

Consultant Oncologist/Director
Breakthrough Breast Cancer Research Unit
King's Health Partners
Academic Health Science Centre
London, United Kingdom

Disclosures for Andrew Tutt, MB ChB, PhD

Advisory Committee	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Novartis Pharmaceuticals Corporation, Pfizer Inc, Sanofi-Aventis
Honoraria	AstraZeneca Pharmaceuticals LP, Sanofi-Aventis

DNA repair mechanisms in cells

- Base-excision repair (PARP)
- Nucleotide-excision repair
- Recombinational repair (BRCA1/BRCA2)
- Mismatch repair

Double Strand Break Repair Pathways

How to target loss of BRCA1 or BRCA2 function?

- Lesions that arrest DNA replication forks
- Loss of homologous recombination
- How could we exploit defect?
- Platinum cross-links?
- Topo-1 inhibitors ?
- Alkylating agents ?
- PARP inhibitors ?

BRCA1 mutation basal-like breast cancer mouse model

Poly (ADP-ribose) polymerase (PARP)

- A key regulator of DNA damage repair processes
- Involved in DNA base-excision repair (BER)
- Binds directly to DNA damage
- Produces large branched chains of poly (ADP-ribose)
- Attracts and assists BER repair effectors

PARP inhibition and tumor selective synthetic

lethality

DNA replication fork arrest and collapse

Normal BRCA1/ BRCA2

HR-based repair

BRCA1/BRCA2 failure

Impaired HR repair

Alternative error prone repair

Chromosomal Instability

Cell Death

Targeting BRCA for tumor selective killing

Tumor-specific lethality

Olaparib: A novel, orally active PARP inhibitor

- A phase I trial identified olaparib (AZD2281; KU-0059436) 400 mg bid as the maximum tolerated dose¹ with a 28% (13/46 pts) response rate (RECIST) in BRCA-mutated ovarian cancer²
- Most common toxicities: CTCAE Grade 1 and 2 nausea and fatigue
- Significant PARP inhibition and tumor response at olaparib doses 100–400 mg bid

^{1.} Yap T et al. *J Clin Oncol* 2007;25(18S):abst 3529

^{2.} Fong PC et al. *N Engl J Med* 2009;361(2):123-34.

Phase II Trial of the Oral PARP Inhibitor Olaparib in BRCA-Deficient Advanced Breast Cancer

Andrew Tutt¹, Mark Robson², Judy E Garber³, Susan Domchek⁴, M William Audeh⁵, Jeffrey N Weitzel⁶, Michael Friedlander⁷, James Carmichael⁸

¹Breakthrough Breast Cancer Research Unit, Guy's Hospital, King's Health Partners, London, UK

²Memorial Sloan-Kettering Cancer Center, New York, NY, USA

³Dana-Farber Cancer Institute, Boston, MA, USA

⁴University of Pennsylvania, Philadelphia, PA, USA

⁵Cedars-Sinai Cancer Center, Los Angeles, CA, USA

⁶City of Hope Comprehensive Cancer Center, Duarte, CA, USA

⁷Prince of Wales Cancer Centre, Randwick, Sydney, New South Wales, Australia

⁸AstraZeneca, Macclesfield, UK

Study design and eligibility

- To assess the efficacy and tolerability of oral olaparib in BRCA1/BRCA2 mutation carriers with breast cancer
- Proof-of-concept phase II study, single-arm sequential cohort design

Confirmed BRCA1 or BRCA2 mutation Advanced refractory breast cancer (stage IIIB/IIIC/IV) after failure of ≥1 prior chemotherapy for advanced disease

Cohort 1 (enrolled first)

Olaparib 400 mg po bid (MTD) 28-day cycles; n = 27

Cohort 2

Olaparib 100 mg po bid 28-day cycles; n = 27

Efficacy

ITT cohort	Olaparib 400 mg bid (n = 27)	Olaparib 100 mg bid (n = 27)
Overall Response Rate, n (%)	11 (41)*	6 (22)*
Complete Response, n (%)	1 (4)	0
Partial Response, n (%)	10 (37)	6 (22)

^{*}An additional 1 patient in the 400 mg cohort and 3 patients in the 100 mg cohort had unconfirmed responses

Best percent change from baseline in target lesions by genotype

BRCA1 downregulation

Int. J. Cancer: 116, 340-350 (2005) © 2005 Wiley-Liss, Inc.

FAST TRACK

High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses

Dalia M. Abd El-Rehim¹, Graham Ball², Sarah E. Pinder¹, Emad Rakha¹, Claire Paish¹, John F.R. Robertson¹, Douglas Macmillan¹, Roger W. Blamey¹ and Ian O. Ellis^{1a}

Journal of Pathology

I Pathol 2003: 200: 207-213.

Published online 17 March 2003 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/path.1348

Original Paper

Prognostic significance of BRCA1 expression in sporadic breast carcinomas

H Lambie, A Miremadi, SE Pinder, A Bell, P Wencyk, EC Paish, RD Macmillan and IO Ellis *

- High histological grade
- Medullary histological type
- Metaplastic histological type
- Basal-like IHC phenotype

Triple Negative Neoadjuvant Trial

Phase II Single Arm Trial

- N = 28
- median age: 50 yrs
- median tumor size = 3.0 cm (1.5 6.3 cm)
- 2 BRCA1 mutation carriers

- pCR 22% incl 2 BRCA1 carriers
- Good MP Score 3-5 50%
- Minor response MP 1-2 36%
- Progression 14%

Impaired BRCA1 and neoadjuvant cisplatin response in TNBC

PTEN pathway loss and loss of HR repair and PARPi sensitivity

- Essential role for nuclear PTEN in maintaining chromosomal integrity

 Shen et al Cell 128, 157–170, January 12, 2007
- PTEN pathway loss common in TN/basal-like (Saal LH Nat Genet. 2008;40:102–107, Marty Breast Cancer Res. 2008; 10(6), López-Knowles Int J Cancer. 2009 Aug 14)
- Loss of PTEN causes a reduction in HR repair and induces sensitivity to PARP inhibition

(Mendes-Pereira A, EMBO Mol Med 1(6-7) 2009)

Efficacy of BSI-201, a PARP Inhibitor, in Combination with Gemcitabine/Carboplatin in Triple Negative Metastatic Breast Cancer: Results of a Phase II Study

Joyce O'Shaughnessy ^{1,2,4}, Cynthia Osborne ^{1,2,4}, John Pippen ^{1,2,4}, Debra Patt ^{3,4}, Christine Rocha⁵, Valeria Ossovskaya ⁵, Barry M. Sherman ⁵, Charles Bradley ⁵

¹Baylor Sammons Cancer Center

²Texas Oncology, Dallas, TX

³Texas Oncology Cancer Center, Austin, TX

⁴US Oncology, Dallas, TX

⁵BiPar Sciences, Inc., Brisbane, CA

Gem/Carbo +/- BSI-201 in unselected TNBC

^{*} Patients randomized to gem/carbo alone could crossover to receive gem/carbo + BSI-201 at disease progression

Preliminary Efficacy Results*

	Gem/Carbo (n = 44)	BSI-201 + Gem/Carbo (n = 42)	<i>p</i> -value
Objective Response Rate n (%)	7 (16%)	20 (48%)	0.002
**Clinical Benefit Rate n (%)	9 (21%)	26 (62%)	0.0002

^{*}Includes patients enrolled before September 30, 2008 and patients who had a confirmed response or disease progression

^{**}Clinical Benefit Rate = CR + PR + SD ≥ 6 months

Updated BSI-201 SABCS 2009

Conclusions

- Single agent synthetic lethality concept shown for olaparib in BRCA1 and BRCA2 mutation carriers with advanced breast and advanced ovarian cancer
- Randomised phase II data for BSI-201 very promising for PARPi combined with gemcitabine/ carboplatin in sporadic TNBC
- Phase III RCT of BSI-201 gemcitabine/carboplatin completed and results awaited
- Consideration of investigation of novel PARPi/ chemotherapy combinations in advanced disease and in early breast cancer trials in TNBC and BRCA1 and BRCA2 carriers

Acknowledgements

- Our patients and their families
- ICEBERG Investigators
- BRCA carrier advocacy community
 - FORCE
 - Susan G Komen
- ICR Breakthrough Centre
 - Alan Ashworth, Chris Lord, Hannah Farmer, Nuala McCabe
 - Nick Turner, Jorge Reis-Filho
- KCL Breakthrough Unit
- Cancer Research UK
- KuDOS/AstraZeneca
 - Stephen Jackson, Niall Graham Graeme Smith, Jim Carmichael