"BRCAness," PARP and the Triple-Negative Phenotype

Prof Alan Ashworth, FRS

Disclosures for Professor Alan Ashworth, FRS

Consulting Agreements	GlaxoSmithKline, Pfizer Inc
Patent	AstraZeneca Pharmaceuticals LP

Types of DNA Damage and Repair

Rationale for Targeting DNA Repair Defects in Tumours

- Germ-line defects in DNA repair components lead to cancer predisposition (eg, BRCA, mismatch repair, etc)
- Many (most?) adult sporadic cancers show evidence of genomic/genetic instability
- Defects in different DNA repair pathways confer sensitivity to specific DNA damaging agents

Tumour Cells in BRCA1 or BRCA2 Mutation Carriers Have Lost Normal BRCA Function

Normal Tissues 1 mutant copy, 1 intact copy of BRCA gene

<u>Tumour</u>

1 mutant copy of BRCA gene

How Can BRCA1 or BRCA2 Mutant Cells Be Selectively Killed While Not Affecting Normal Cells in Mutation Carriers?

Normal Tissues

1 mutant copy, 1 intact copy of BRCA gene

<u>Tumour</u>

1 mutant copy of BRCA gene

Types of DNA Damage and Repair

BRCA2 Tumour Cell Line CAPAN-1

Courtesy Paul Edwards, Univ of Cambridge

The Use of Alternative Pathways Underlies the DNA Repair Defect in BRCA Deficient Cells

Synthetic Lethality — The Principle

Chang J. TNBC 101 Research To Practice Webinar 2010.

Synthetic Lethality in DNA Repair Pathways

BRCA1 or BRCA2 Carrier Normal tissue

DNA DAMAGE

BRCA1 or BRCA2 Carrier

DNA DAMAGE

Tumor-specific lethality

Tutt A et al. Cold Spring Harb Symp Quant Biol 2005;70:139-48; Ashworth A. J Clin Oncol 2008;26(22):3785-90.

Poly(ADP-ribose) Polymerase (PARP)

PARP:

- Involved in DNA base-excision repair
- Binds directly to DNA damage
- Produces large branched chains of poly(ADP-ribose)

Extreme Sensitivity of BRCA2-Deficient Cells to PARP Inhibition

Farmer H et al. *Nature* 2005;434(7035):917-21.

Loss of One Copy of the *BRCA2* Gene Does <u>NOT</u> Cause Sensitivity to PARP Inhibitors

Farmer H et al. *Nature* 2005;434(7035):917-21.

BRCA1-Deficient Cells Are Also Extremely Sensitive to PARP Inhibition

Farmer H et al. *Nature* 2005;434(7035):917-21.

Synthetic Lethality between PARP Inhibition and BRCA1/2 Mutation

Synthetic Lethal Resistance

- Resistance arises to many targeted therapies
- Frequently due to mutation of "target" (eg, imatinib/cAbl)
- How does resistance to a synthetic lethality arise?

PARPi Resistant CAPAN1 (BRCA2 c.6174deIT) Cells

Edwards S et al. Nature 2008;451(28):1111-6.

Restoration of BRCA2 Open Reading Frame in PARPi Resistant Cell Lines

Edwards S et al. *Nature* 2008;451(28):1111-6.

Lessons for Use of PARP Inhibitors

- Likely clinically relevant as similar phenomenon observed in ovarian cancer after platinum resistance
- As with other targeted therapies mechanism based resistance can occur but SYNTHETIC LETHAL RESISTANCE in this case (does not preclude other mechanisms)
- Late-stage disease, resistance likely due to large target pop for resistance
- Best results likely to be achieved in early/adjuvant treatment

Extending the Approach to Sporadic Cancer

- BRCAness Molecular features of BRCA1 or BRCA2 mutant tumours in sporadic cancers
- Suggests that therapies directed against BRCA defects might be effective in a sporadic group of tumours
- Example of BRCAness may be triple negative (ER, PR and HER2-)/basal-like and BRCA1 tumours

Turner N et al. *Nat Rev Cancer* 2004;4(10):814-9.

Similarity between BRCA1 Mutant and Basal/Triple Negative Tumours

	Basal-like and TN	BRCA1
High grade		
Pushing borders	\checkmark	\checkmark
Brisk lymphocytic infiltrate	\checkmark	\checkmark
High proliferation rates	\checkmark	\checkmark
ER-	\checkmark	\checkmark
PR-	\checkmark	\checkmark
HER2-		
TP53 mutations		

Turner NC et al. Oncogene 2006;25:5846-53.

Basal-Like and TN Breast Cancers

- Account for 12-17% of all breast cancers
- More prevalent in
 - Younger women (<50 years)
 - African and Hispanic descent
 - BRCA1 mutation carriers
- More frequently interval cancers

BRCA1 Downregulation

- High histological grade
- Medullary histological type
- Basal-like and TN immunophenotype
- BRCA1 somatic mutations are exceedingly rare

TN and Basal-Like Carcinomas

Turner NC et al. Oncogene 2007;26(14):2126-32; Figure adapted Copyright © 2010, Research To Practice, All rights reserved. from Rakha EA et al. J Clin Oncol 2008;26(15):2568-81.

Patient Selection by Assaying DNA Repair Capacity

HR Biomarkers RAD51 Foci Biomarker

- Lack of RAD51 focus formation after DNA damage is a robust marker of HR deficiency in cell lines
- Problematic in tumours as need to measure post damage — archival specimens can't be used

Measuring Induction of RAD51 in Breast Tumours in Response to Chemotherapy

24 hours

Chemotherapy

Biopsy —— Stain for RAD51 and geminin (as control for cell cycle)

RAD51 Scores for Tumours Treated with Neoadjuvant Chemotherapy

- Tumors that achieved a pathological complete response (pCR) with neoadjuvant chemotherapy had lower RAD51 scores.
- Of the tumors with low RAD51 score, 33% achieved pCR compared to 3% of tumors with RAD51 foci formation.
- Low RAD51 score was associated with high histological grade, ER-negative tumors and triplenegative cancers.

Graeser M et al. Clin Cancer Res 2010;16(24):6159-68. Copyright © 2010, Research To Practice, All rights reserved.

Breakthrough Centre

ICR, Chelsea Stacey Edwards Hannah Farmer Monika Graesser Nuala McCabe Ana Mendes-Pereira Nick Turner Jorge Reis-Filho Chris Lord

Phase I Unit ICR, Sutton

Tim Yap Peter Fong Shaneen Sadhu Stan Kaye Johann deBono

> KCL/Guy's Andy Tutt

KuDOS/AstraZeneca

KuDQS

Steve Jackson Niall Martin Mark O'Connor Peter Harris Peter Mortimer James Carmichael Graeme Smith

